北京邮电大学学报

2019, v.42(05) 22-28

[打印本页] [关闭]
本期目录(Current Issue) | 过刊浏览(Past Issue) | 高级检索(Advanced Search)

基于深度神经网络复杂场景下的机器人拣选方法
Robotic Sorting Method in Complex Scene Based on Deep Neural Network

韩兴;刘晓平;王刚;韩松;

摘要(Abstract):

针对提高快递包裹的分拣效率和识别准确率,提出了一种基于深度神经网络复杂场景下的机器人拣选方法.首先,提出一种改进的目标检测算法,通过将多层浅层特征图与最终的特征图进行融合,提取更加细节的特征,以提升识别的速度与精度;其次,提出了一种基于关键点的级联卷积最优拣选位置检测网络模型,对包裹最优拣选位置进行实时预测估计;最后,结合目标包裹最优拣选框与场景的深度信息和基于三维信息的目标姿态估计算法实现机器人拣选,并通过实验验证了该方法的有效性.

关键词(KeyWords): 深度神经网络;最优拣选位置;关键点检测;机器人拣选

Abstract:

Keywords:

基金项目(Foundation): 北京市科研项目(201702001);; 北京邮电大学青年科研创新计划专项项目(2017RC22)

作者(Author): 韩兴;刘晓平;王刚;韩松;

Email:

参考文献(References):

扩展功能
本文信息
服务与反馈
本文关键词相关文章
本文作者相关文章
中国知网
分享